If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+30x+18=0
a = 6; b = 30; c = +18;
Δ = b2-4ac
Δ = 302-4·6·18
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{13}}{2*6}=\frac{-30-6\sqrt{13}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{13}}{2*6}=\frac{-30+6\sqrt{13}}{12} $
| -181=5x-6(-3x+11) | | 25+x+x+3x=435 | | 1/2x^2=2x^2 | | 3x+6x=5+-14 | | n+5n=0 | | 4(2-4n)+10=-9n+53 | | −2q+11−2qq =−32 | | -7(4x+3)=-25x-21-3x | | Yx6=48 | | s+-9=-5 | | -10/21*c=-15/28 | | 12/5x=(-3/7) | | -83=k+-47 | | u−2=0 | | t+65=94 | | -2x+70=91-5x | | 7-5x+1=0 | | k/3-3k+4=10 | | 4(h-4)+7h=6 | | x^2−2x+6=0 | | 3x^2+5x/x=10 | | 8b+6b=-14+8b+4b | | H(4)=x3+2x | | 12x+15=2(34x−4)12x+15=2(34x-4) | | 4x-(2x+5)=10 | | 4x÷5=2x | | 4x-2x+5)=10 | | 65+78+8x-9=180 | | -v=1 | | 8x-9=5(x-6) | | 6x+15+132+21=180 | | -3x-45=6(x-6) |